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1. Introduction

Much of the literature that presents analytical or compaoret solutions to “impact-type” initial
boundary value problems assumes an impact boundary camditihe form of a constant applied
step in stress or velocity, éf3 This simplifying assumption is particularly useful for
characterizing elastic shocks in flyers and targets that@meogeneous, linear elastic, and
semi-infinite. Here, elastic shocks are defined by stresgamplitudes that are less than or
equal to the Hugoniot elastic limit, cf., page 248, equatith4) of Davisorf. However, for a true
impact into a piezoelectric medium that is multilayeredinttomogeneous, or possesses other
material discontinuities, the target introduces multielitected or scattered waves at the impact
face, so that the history of the stresand the particle velocity at the impact face is generally
time-dependent and cannot be known in advance of the spltttithe problem. The use of a
constant stress or velocity boundary condition is an ilvasisumption for modeling impact in
such targets, yet its use is widespread in the mechanicatlire.

Both Redwood and Steutzérstudy the problem of multiply reflected transient waves,
characterized by an infinite set of jump discontinuitiedinear piezoelectrics subjected to either
a step in stress or voltage, but these boundary conditi@sarappropriate for the elastodynamic
impact problem. Other works address shock wave propagatiaonlinear piezoelectric

media’~® but the complexity of the material response prohibits aryaical treatment of the
electromechanical coupling in the unstressed region abietleg shock wave. In this report, we
first outline the linear equations of dynamic piezoelediri¢ollowing closely the development
found in Redwoodand Steutzet,and show how the d’Alembert solution is also applicable ® th
study of multiply reflected transient waves in linear pideotics. We then study the “true”
elastodynamic impact problem using a new impact boundangition originally introduced by
Scheidler and Gazona$the full derivation of the impact boundary condition is bdisa the
d’Alembert solution of the wave equation, and appears inoBag et al! Our results are
analytical in the Laplace domain but are numerically invetb the time domain using a modified
Dubner-Abate-Crump (DAC) algoriththdesigned to mitigate the effects (using Lanczos
o-factors) of the Gibbs phenomenon (ringing seen in Fougges representations of jump
discontinuities). One-dimensional (1-D) impact-indusg@ss, velocity, and electrical
displacement fields at the center of a lead zirconate tika(®2 T-4) target are compared with
solutions obtained using a finite-difference time-dom&mDTD) code and the commercial finite
element (FE) code, COMSOL Multiphysié$The FDTD code was developed by Raymond A



Wildman and the COMSOL simulations were performed by Daviddpkins to compare with

the derived numerical inverse Laplace transform (ILT) #ohs. The final value theorem (FVT)
can be used to verify that the asymptotic (long-time) steegbkvelocity in the piezoelectric target
are independent of the target’s elastic or piezoelectop@ities, and only the elastic properties of
the flyer and half-space, a result also proven using the tiomeain solutions obtained for purely
elastic targets! The FVT is also used to determine a closed-form expressictnéoasymptotic
displacement current.

2. Plane Waves in Piezoelectric Media

The 1-D constitutive equations for a linear piezoelectratenial can be written using the
notatiory 14

o(x,t) = C’D&xx’t) — hD(z,t), (1)
E(x.1) = —ha“g; D 4 Dty )

whereo is the stress iV /m?, C'? is Young's modulus measured at constanin N/m?, u is the
particle displacement im, D is the electric flux density id@'/m?, € = ¢ ¢, is the dielectric
permittivity in F'/m, ¢, is the permittivity of a vacuum id'/m, e, is the relative permittivity of
the mediump is a piezoelectric constant measured at congtaint VV/m, and€ is the electric
field in V/m (or N/C). The piezoelectrically stiffened elastic constant, Eq. 1, is defined in
Cady*® (pg. 270 equation (271 a)), by The Institute of Radio Engis¢kRE)* (pg. 1394, Table
I11) or even Chen et al.(pg. 4760), and is given by

CP =CFteh, 3)

whereC” is Young’s modulus measured at constént is a piezoelectric coupling constant in
C/m?, andh = e/e. In addition, from Newton’s second law,

O*u(z,t)  Oo(x,t)
o2 Oz

, fort >0, x € (—00,00), (4)

wherep is the mass density ihg/m?. Following the development in Redwobar Steutzet for



linear piezoelectric media, substitution of Eq. 1 into Egives

O*u(z,t) C_Dﬁzu(x,t) _ h 0D(z,t)

ot? p  Ox? p Or ®)

If there is no free chargey,.. = 0, inside the piezoelectric medium, théiv D = py,.. = 0 (see
e.g., Lorrain and Corsol§,pg. 109), and the differentials with respectjtandz are assumed to
be zero (plane wave propagation in Cartesian coordinatés),dx = dD,/dx = 0, hence
dD,/dx = 0, and Eq. 5 becomes

O%u(x,t) 5 0%u(w,t)

o ¢ ox? (6)

wherec = /CP /p is the piezo-modified longitudinal wave speed witR given by Eq. 3.

3. Impact-Induced Plane Waves in a Piezoelectric Target

We now consider the problem of a semi-infinite non-piezdeleelastic flyer traveling at initial
velocity 1 that collides with (and welds to) a finite, undeformed, siadiry piezoelectric target of
finite lengthl; the target is backed by a semi-infinite non-piezoelectaste half-space (Fig. 1).
Because our sign convention for stress is taken positivenmpression, the stress in the linear
elastic piezoelectric target is given by Eq. 1 with the misigs:

Ouy (x,t)

oi(x,t) = -CP e

We denote field quantities with a subscript @f ‘as quantities in the piezoelectric target, and
subscripts of 0” and “h” refer to field variables in the flyer and half-space, respebt. From
Eq. 6 with this notation, the transient target displacementr, t) are governed by the wave
equation in one-spatial dimension,

Puy(z,t)  , O%uy(x,t)

57 = g fort >0, =€ (0,1). (8)

The general solution to the wave Eqg. 8 in the target can bemed using d’Alembert’s
equation:
uy(z,t) = filt —x/c1) + gt +z/e1) 9)

wheref;(-) andg, (-) are arbitrary functions. The displacementis assumed to be continuous

3
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Fig. 1. A semi-infinite non-piezoelectric elastic flyer (iegancez,) traveling at
initial velocity V; impacting a piezoelectric target (impedangg of
lengthi; the short-circuited targdt; (¢) = 0 is backed by a semi-infinite
non-piezoelectric elastic half-space (impedagnge

and piecewise-smooth, which implies that the d’Alembentcfions f; andg; are also continuous
and piecewise-smooth. Lettinfg = F; andg; = G4, then the d’Alembert solution 9, together
with the Eq. 7 for the stress, yields

o(z,t) =z | Fi(t —x/c) — Gi(t+x/c1)| + hDy(x,t) , (10)

wherez; = p;c; is the piezo-modified target impedance. Similarly, theiplrvelocity v, in the
target is given by

vy (z,t) = % =F{t—z/c)+Gi(t+x/c1) . (11)
It is evident that the stress and particle velocity in thgeaare determined once the functions
Iy, Gy, andD, are determined. Note that discontinuitiedinor GG; correspond to the passage of
shock waves at interior points or the reflection of shock waatghe boundaries = 0 andx = .
This behavior is independent of the back face boundary tiongi assuming the flyer welds to

the target at impact.



To solve forFy, G, and D, requires consideration of the initial conditions (in thése
homogeneous) and boundary conditions of the target. Thalioonditions are

8U1 (.T, 0)

u1(z,0) =0, By

=uv(z,0) =0, x€]0,]]. (12)
Then EQ.12, and the stress-strain Egimply that

o1(x,0) = Dy(2,0) =0, z€[0,1]. (13)

4. Laplace Transform of the D’Alembert Solution

Solutions for thdrue impact problem with appropriate back face boundary cooulitiare

obtained in this section by Laplace transform techniqués.derivation of these solutions require
the Laplace transform of the field equations, which is cagrgd here. Lef denote a real-valued,
piecewise-continuous function defined at least®no). We employ the right-sided or unilateral
Laplace transfornt of f defined as

Fls) = LUYs) = £ FO)6) = [ fyeat, (1)

Heres = o + iw is generally a complex number wiff(s) > 0, and the overbar offi indicates
that the function is in the Laplace domain. The Laplace fanss of field variables such as
ui(x,t), o1 (z,t) andv(x, t) are taken with respect to the time variabléor example,

o0

o1(z,s) = L{or(z,t)}(s) = /O’l(l’,t) e tdt . (15)

0

Applying Laplace’s shifting theorem, we see that
LAR(t+afe)}y=eaFi(s), LAGi(t—x/c))}=ee Gi(s). (16)

Laplace transformation of Egs. 9, 10, and and using Eql6, we obtain Laplace-domain
expressions for the displacement, stress, and partiabeitgin the target in terms of the



transforms of the d’Alembert functions:

i (2, 5) = %[e R(s) + e Ga(s)] | (17)
a1(z,s) =z [e B Fy(s) — 6%61(8)] + hDy(s), (18)
71 (z, 8) = [el—izﬁl(swei—f@l(s)} . (19)

To find the potential across the piezoelectric target okitéss/, integrate the electric field

&1 = —VVi. Unlike the gravitational field and other field potentialee minus sign is used here
since the electric field is “governed by Coulomb’s law whdesreents of like sign repel,” cf.,
page 22 of Sternberg and Smith.

l

Vi(t) = —/51(x,t)dx ) (20)

0

Substitution of EqQ. 2 into Eq. 20 and specializing this to lagi$-circuit” solution, where the
electrical impedance between the target impact face aridfaee is negligible (see Fig. 1),
results in

Vi(t) = 0= —hlui(l,t) —u1(0,t)] + 1D (t) /€, (22)

where the quantity in bracke{&l(l, t) — uy(0, t)] in Eqg. 21 represents the relative motion of the
target surfaces. Taking the Laplace transform of Eq. 21 abdtgution of Eq. 17 results in

_ hr- —sl _ sl _
Vi(s) = 0=~ [Fl(s)a )+ Gh(s)(1 — e )] 41Dy (s) /e . (22)
Three equations are required to find the three unknown fomefi' (s), G1(s), andD, (s). The
firstis given by EqQ. 21, the second is given by the boundargitimm between the target and the
half-space derived elsewhere,

Ul(lv t) = Zfﬂ)l(lv t) 9 (23)

and the third equation is given by a newly deriteidhpact boundary condition,
201 (O, t) + 01 (0, t) = Zo% . (24)

Although not shown here, the elastodynamic impact boundamngitions (Eqgs. 23 and 24) are
also applicable to the piezoelectric impact problem for mbgeneous, elastic, and semi-infinite
flyer and half-space backing the target. Substitution of EGghrough 19 into the Laplace
transforms of Egs. 21, 23, and 24 permits unique deternainati functionsF; (s), G1(s), and



D (s). Substitution of these functions into Egs. 18, 19, and 2&alldetermination of the stress,
velocity, and displacement current by using numerical llgodthms. PZT-4 target mechanical
and electrical propertiésare given in Table 1. The elastic properties for the flyer amiéi$pace
are identical and similar to that of a “non-piezoelectrit¥ed material.

Table 1. Mechanical and electrical properties.

Constant PZT-4'3 Steel
CF (GPa) 115.41 314.89
20 = po co (kg m=2/s?) - 7850x% 5110
21 = prcy (kgm=2/s?) 7500x 4533 -

2 = 20 (kg m™2/s?) - 7850x% 5110
¢o (farads/m) 8.854187817e-12 -

€r 663.2 -

e = e € (farads/m) 5.87209736e-09 -

e (coul/m?) 15.08 -
h=e/e (V/m) 2.5680773e+09 -

CP =CF + eh (GPa) 154.136 -

Solutions in the time domain are illustrated in Figs. 2, 3 4rand are found by numerical
inversion of the Laplace transform using the DAC algoritfmodified by Laverty and
Gazona¥ to mitigate the effects of Gibbs’ phenomenon using the sled¢#anczosr-factors
with 2048 terms in the Fourier series and a tolerance equadtd. A general compiled
Mathematica code for the numerical inversion of functiomfhyump discontinuities appears in
the Appendix. The stress in the target in the Laplace domamgiven by the function containing
the exponentials in Eg. A-1. This same code works equallyfaetontinuous functions and
users need only replace the last expression in Eq. A-1 wiin twn Laplace-domain expression,
as well as listing the constants appearing in their expoesai the beginning of thelodule
command. Eq. A-2 computes the numerical ILT of the func&bressand stores these values in
the functionX. The Mathematica compile function executes this code imtlean 8 s on a Dell
laptop with a 64-bit OS and 8 GB of RAM running on an Intel(Ry&dM) i5 CPU, M 560 at
2.67 GHz. The same code executes in 135 s using uncompildtektatica code. Eq. A-3 plots
the normalized stress at the center of the piezoelectric target (see Fig. A-1)sthess is
normalized by the initial elastic jump given by the expreagump. Figs. 2, 3, and 4 also
illustrate solutions to the piezoelectric impact problesing a FDTD method and COMSOL
Multiphysics, a commercial FE cod&poth of which exhibit wave dispersion effects.
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Fig. 2. Normalized stress history at the center ofiafm-thick piezoelectric
target (PZT-4) backed by a semi-infinite non-piezoeleatistic
half-space under impact by a semi-infinite non-piezodteelastic flyer
with initial velocity V, = 5 m/s; the normalization factor is the initial
elastic stress jump at impact given &§0,0") = % Vo wherez g is

the “elastic-only” impedance of the target, and
Z1E = P1C1E = 7500 x 3922.8 ci1p = \/CE/pl, see Table 1.
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Fig. 3. Normalized velocity history at the center of abn-thick piezoelectric
target (PZT-4) backed by a semi-infinite non-piezoeleatistic
half-space under impact by a semi-infinite non-piezodteelastic flyer
with initial velocity V, = 5 m/s; the normalization factor is the initial
elastic velocity jump at impact given hy0,0") = Zo-iz-gw Vo, wherezi g
is the “elastic-only” impedance of the target, and

Z1E = P1C1E = 7500 x 3922.8 ci1p = \/CE/pl, see Table 1.




-0.002-
—0.004-

~0.006-

D(t) coul/nf

—0.008-

-0.01- \ —— modified—DAQ
—— COMSOL

FDTD

-0.012 N

-0.014 ;
0

Fig. 4. Displacement current time history at the center ofrarh-thick
piezoelectric target (PZT-4) backed by a semi-infinite p@roelectric
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flyer with initial velocity V, = 5 m/s; the asymptotic displacement
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5. Discussion and Conclusions

The numerical solutions reveal the nearly instantaneopsapnce of a tensile stress wave at the
center of the target, which increases linearly in amplit{sge Fig. 2), and is formed by the

&-field induced polarization of the material in the initialipstressed region of the target. For
nonlinear piezoelectric media, Chen et’ateport that this wave cannot be a shock wave but must
be an acceleration wave since the wave speed depends upoe-ddépendent displacement
currentD(t) (see Chen et dlequation (4.12)). The nearly instantaneous appearante stitess
wave occurs since the speed of light is about five orders ohihade greater than the

longitudinal wave speed in the target. The tensile stresgvgaeventually overcome by the
impact-induced compressive stress wave at abouyt.8Ve are not aware of any other “true”
elastodynamic impact solutions in the literature, whictrectly treat the occurrence of multiply
reflected transient waves in piezoelectric targets.

Numerical time-domain solutions of stress, velocity, arglhcement current at the center of a
5-mm-thick PZT-4 target are obtained via a modified-DAC algaritland compare well with
those obtained using both a FDTD method and the commerciabBE COMSOL
Multiphysics!® Although not shown in this report, the final value theorem TlF¢an be used to
verify that the asymptotic (long-time) stress and velouitthe piezoelectric target are
independent of the target’s elastic or piezoelectric prtigand only the elastic properties of the
flyer and half-space, a result also proven using the timeaitosolutions obtained for purely
elastic targets! The FVT is also used to determine a closed-form expressiaihéoasymptotic
displacement current,

20 2nhe o1(x,00)

Dl(OO):— Vb:

(ZQ -+ Zh) (Cl Z1 — h2€) (h — %) ’

(25)

illustrated in Fig. 4, where (z, o) is the asymptotic target stres's.

11
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Appendix. Mathematica Code for Determining the Numerical ILT Using the
Modified-DAC Algorithm

The following is the Mathemati¢&code for determining the numerical inverse Laplace tramsfo
(ILT) using the modified Dubner-Abate-Crump (DAC) algorniti? Figure A-1 shows the
normalized stress time history of the target.

Stress= Compile[{{s,_Complex}}, Module[{l, z, eo, Ce,ers,e2,e,h, M, p,cl, V0,
20, 21, zh,a,b,c},l = 5% 107%; 2 = 1/2; eo = 8.854187817 x 107'%; Ce = 115.41 x 10%;
ers = 663.2;€2 = 15.08;e = eox ers; h = €2/e; M = Ce + €2 x h; p = 7500;
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¥ = Compile[{ }, Module[{sumcp, sumsp, tf, tol,a,tot, c0, T,dt, o, arg, coef f s,
cospart, cl, 2, sinpart, kpd, t, kpt};tf = 5% 107 tol = 0.00001;
Log]tol t
= —M; tot = 2048; c0 = Stresgal; 7 = 1000; dt = —f;
2tf T
km km
Table[sumcp = 0.; sumsp = 0.; DOlkpd = —; kpt = —;
tot tf
Sin[kpd
= %; coef fs = Stressa + i x kpt]; c1 = Re[coef fs]; c2 = Im]coef fs];
D
cospart = oclCosl|t * kpt]; sumep = cospart + sumcep;
sinpart = oC2S8in[t * kpt]); sumsp = sinpart + sumsp, {k, 1, tot}];
Expla * t]($ + sumcp — sumsp)

tf ? {t7 dt? tf? dt}]]?

CompilationOptions— {"InlineExternalDefinitions“— True,

“InlineCompiledFunctions*- True}]; (A-2)

V0 =5;p=7500; 20 = p*5110; Ce = 115.41 % 10% 2n = /p * Ce;

20zn

sjump = V0 ; ListPlot[X[ ]/sjump, Joined— True

zU0 + zn
BaseStyle— {FontFamily— "Times", FontSize— 12},
PlotRange— Full, DataRange— {0, 5 * 107°},

AxesLabel— {"Time (s)",” UU(E(/)%I;) “}]

(A-3)
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Fig. A-1. Normalized stress time history at the center ofrara-thick
piezoelectric target (PZT-4) backed by a semi-infinite p@roelectric
elastic half-space under impact by a semi-infinite nongméectric
elastic flyer with initial velocityVy = 5 m/s.
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